ADVANCED MATHEMATICAL METHODS In Physics

Savita Gahlaut

SULTAN CHAND & SONS

Advanced Mathematical Methods in Physics To Maa Naresh Kshitiz & Arahan the four pillars of my life

Advanced Mathematical Methods in Physics

Savita Gahlaut

SULTAN CHAND & SONS

Educational Publishers New Delhi

SULTAN CHAND & SONS

Educational Publishers 23, Daryaganj, New Delhi-110 002 Phones : 23281876, 23243183, 23247051, 23266105, 23277843 E-mail : sultanchand74@yahoo.com; info@sultanchandandsons.com Fax : 011-23266357; Website : www.sultanchandandsons.com

ISBN: 978-93-91820-04-6 (TC 1250)

Price : ₹ 250.00

First Edition : 2021

EVERY GENUINE COPY OF THIS BOOK HAS A HOLOGRAM

In our endeavour to protect you against counterfeit/fake books, we have pasted a copper hologram over the cover of this book. The hologram displays the full visual image, unique 3D multi-level, multicolour effects of our logo from different angles when tilted or properly illuminated under a single light source, such as 3D depth effect, kinetic effect, pearl effect, gradient effect, trailing effect, emboss effect, glitter effect, randomly sparking tiny dots, micro text, laser numbering, etc.

A fake hologram does not display all these effects.

Always ask the bookseller to put his stamp on the first page of this book.

All Rights Reserved: No part of this book, including its style and presentation, may be reproduced, stored in a retrieval system, or transmitted in any form or by any meanselectronic, mechanical, photocopying, recording or otherwise without the prior written consent of the Publishers. Exclusive publication, promotion and distribution rights reserved with the Publishers.

Warning : The doing of an unauthorised act in relation to a copyright work may result in both civil claim for damages and criminal prosecution.

Special Note : Photocopy or Xeroxing of educational books without the written permission of Publishers is illegal and against Copyright Act. Buying and selling of pirated books is a criminal offence. Publication of key to this is strictly prohibited.

General: While every effort has been made to present authentic information and avoid errors, the author and the publishers are not responsible for the consequences of any action taken on the basis of this book.

Limits of Liability/Disclaimer of Warranty : The publisher and the author make no representation or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damage arising herefrom.

Disclaimer : The publisher have taken all care to ensure highest standard of quality as regards typesetting, proofreading, accuracy of textual material, printing and binding. However, they accept no responsibility for any loss occasioned as a result of any misprint or mistake found in this publication.

Author's Acknowledgement : The writing of a Textbook always involves creation of a hug debt towards innumerable author's and publications. We owe our gratitude to all of them. We acknowledge our indebtedness in extensive footnotes throughout the book. If, for any reason, any acknowledgement has been left out we beg to be excused. We assure to carry out correction in the subsequent edition, as and when it is known.

Preface

The mathematical concepts are an absolute necessity for physics students. Various mathematical methods are used to understand, study and develop new theories in all the branches of Physics. In this book some advanced mathematical concepts are explained with examples. All the topics covered in the book are explained considering the requirements of Physics students.

The book is aimed for the Honours and Post graduate syllabi of the Indian universities. It is developed as a textbook for the undergraduate and postgraduate students of physics. The topics covered in the book are equally important for the engineering students too. The research student will also find it useful as a quick reference book.

The book is a result of teaching the topics, covered in the book, for about 10 years. Each topic is explained from the basics to make it a self sufficient book. As the book is primarily meant for physics students, it do not have too many theorems as are found in mathematics books which makes the subject dull. Each concept in the book is explained with the help of examples, solved problems and applications in physics. At the end of each chapter more problems are given for practice.

The topics covered in the book are a part of the syllabi prescribed in different Indian Universities. Matrices, vector Spaces, Linear transformations and Cartesian Tensors are also a part of the syllabus of undergraduate Engineering courses in various Technical Institutes and Universities.

The book is based on the syllabus of the paper 'Advanced Mathematical Physics-I' and also covers Group theory which is a part of the paper 'Advanced Mathematical Physics-II' taught to the 3rd year students of B.Sc(H) Physics, Delhi University. I have been teaching these topics for about 10 years and found that students as well as teachers have not been able to find a book which satisfactorily fulfills the requirements of courses in Physics. Most of the books on these topics are meant for Mathematics students which Physics/Engineering students find difficult to relate to the problems of their field. Some books meant for Physics students discuss these topics briefly and do not give enough weightage required for applications in Physics. Moreover, there is not a single book in the market which covers all these topics in

sufficient details and teachers/students have to refer different books for different topics which are part of one paper.

I hope the readers will find the book helpful in understanding the concepts. Any suggestions to improve the book are welcome from the readers. I shall be thankful to one and all to bring to my notice any inadvertent mistakes in the book.

Dr. Savita Gahlaut

Contents

1.	Sets, Re	lations and Operations	1
	1.1	Set	1
	1.2	Basic Operations on Sets	3
	1.3	Cartesian Product of Sets	6
	1.4	Relations	6
	1.5	Types of Binary Relations	6
	1.6	Functions and Mappings	. 8
	1.7	Binary Operations	9
2.	Matrice	s and Determinants	13
	2.1	Matrices	13
	2.2	Matrix Algebra	13
	2.3	Transpose of a matrix	17
	2.4	Trace of a square Matrix	18
	2.5	Special Square Matrices	19
	2.6	Block Matrices	25
	2.7	Elementary Matrices	28
	2.8	Echelon Matrices	30
	2.9	Determinant	31
	2.10	Rank of a Matrix	35
	2.11	Matrix Inversion	36
3.	Groups		43
	3.1	Abstract Systems	43
	3.2	Semi-Group	44
	3.3	Group	44
	3.4	Some Elementary Properties of Groups	48
	3.5	Cyclic Group	49
	3.6	Group of Permutations	52
	3.7	Sub-Group	60
		3.7.1 Properties of Sub-groups	61
	3.8	Cosets of a Sub-Group	62
		3.8.1 Properties of Cosets	62
	3.9	Lagrange's Theorem	63
	3.10	Normal Sub-Group	64
		3.10.1 Normalizer of a Group	65
	3.11	Centre of a Group	65
		3.11.1 Centralizer of a Group	67
	3.12	Relation of Conjugacy in a Group	67
	3.13	Conjugate Sub-group	68

Contents

4.	Homon	norphism and Isomorphism	71			
	4.1	Group Homomorphism	71			
	4.2	Kernel of Homomorphism	72			
	4.3	Group Isomorphism	74			
	4.4	Cayley's Theorem	76			
5	Vector 9	Spaces	81			
0.	5 1	Fields				
	5.2	Voctor Space				
	5.2	Subspace				
	5.0	Linear Combination of Vactors				
	5.4	Linear Donondonce and Indonondonce				
	5.5	Basis and Dimensions				
	5.0	Coordinates				
	0.7 E 0	Loordinates				
	5.8 E.0	Isomorphism of vector Spaces				
	5.9	Inner Product of vectors				
		5.9.1 Norm of a vector				
	F 10	5.9.2 Cauchy-Schwarz Inequality				
	5.10	Orthogonality				
		5.10.1 Orthonormal Bases	101			
6.	Linear	Transformations	109			
	6.1	Definition and Examples	109			
	6.2	Range Space of a Linear Transformation	112			
	6.3	Kernel of a Linear Transformation	114			
	6.4	Operations with Linear Transformations	116			
	6.5	Vector Space of Linear Transformations	119			
	6.6	Singular and Non-Singular Transformations				
7.	Linear	Transformations and Matrices				
	7.1	Matrix Representation of Linear Transformations.				
	7.2	Algebra of Linear Transformations				
	7.3	Change of Basis				
	7.4	Similarity Transformations				
	7.5	Moment of Inertia Matrix	142			
	7.6	Problems				
8	9 Eisenselve Decklama en d Disconstitution 140					
0.	2 1 gente	Figonyaluos and Figonyactors	1/0			
	0.1	Eigenvalues and Eigenvectors				
	0.2	Eigenspace of an eigenvalue				
	0.5	Finding Eigenvalues and Eigenvectors				
	0.4 0 E	Some Userul Results				
	0.5	Circulture events Disconstitution				
	ð.6	Simultaneously Diagonalizable Matrices				
	8.7	Coupled Linear Differential Equations				
	8.8	Problems				
9.	Functio	n of Matrices	183			
	9.1	Cayley-Hamilton Theorem	183			
	9.2	Minimal Polynomial				
	9.3	Minimal Polynomial and Diagonalizability	190			

	9.4	Norm of a Matrix	193
	9.5	Matrix Functions	194
	9.6	Evaluating Matrix Functions	200
	9.7	Problems	203
10.	Cartesia	an Tensors	205
	10.1	Coordinate Transformations	205
	10.2	Tensors of order one and zero	207
	10.3	Tensors of order two	208
	10.4	Tensors of higher order	210
	10.5	Fundamental Operations with Tensors	211
	10.6	Tensor Fields	212
	10.7	Kronecker Delta	213
	10.8	Alternating Tensor	215
	10.9	Cross-Product of Vectors	219
	10.10	Triple products	220
	10.11	Pseudo Tensors	221
	10.12	Geometrical Applications	227
	10.13	Rotation Tensor	232
	10.14	Isotropic Tensors	234
11.	Physica	l Tensors	241
	11.1	Tensor of Polarizability	241
	11.2	Moment of Inertia Tensor	246
	11.3	Tensor of Stress	248
	11.4	Strain Tensor	254
	11.5	Elastic Constants	260

About the Book

Mathematical concepts are an absolute necessity for physics and engineering students. Various mathematical methods are used to study, understand and develop new theories in all the branches of physics. In this book some advanced mathematical methods are explained, keeping in mind the requirements of physics students. The book is aimed for the undergraduate and postgraduate physics students and engineering students. The research student will also find it useful as a quick reference book.

Salient Features

- Each topic is explained from the basics to make it a self-sufficient book.
- All the concepts are explained with the help of examples and solved problems.
- Unsolved problems are given at the end of each chapter for more practice.
- Applications of concepts in physics are discussed.

Dr. Savita Gahlaut is currently an associate professor at Deen Dayal Upadhayaya College, University of Delhi. She has a teaching experience of 25+ years at undergraduate level. She received her Ph.D in Physics from Delhi University. Her area of specialization is General Theory of Relativity and Cosmology.

Sultan Chand & Sons Publishers of Standard Educational Textbooks

23 Daryaganj, New Delhi-110002 Phones: 23243183, 23247051, 23277843, 23281876, 23266105 Email: sultanchand74@yahoo.com, info@sultanchandandsons.com; Fax: 011-23266357 Website: www.sultanchandandsons.com

