Elements of Operations Research

(Quantitative Techniques for Decision-Making)

Dr. P.K. Gupta Assisted by

Dr. Priyanshu Gupta

Sultan Chand & Sons

First Edition Elements of Operations Research

(Quantitative Techniques for Decision-Making)

Elements of Operations Research

First Edition

(Quantitative Techniques for Decision-Making)

By

Dr. P. K. GUPTA

Associate Professor (Rtd.), J V Jain College, Saharanpur Formerly visiting faculty member, Department of Mathematics, Cochin University of Science & Technology, Kochi (Kerala)

Assisted by Dr. PRIYANSHU GUPTA

Assistant Professor, Faculty of Business Sustainability Indian Institute of Management, Lucknow

Educational Publishers New Delhi

SULTAN CHAND & SONS[®]

23, Daryaganj, New Delhi-110002 Phone: 011-23281876, 23266105, 23277843 (*Showroom & Shop*) 011-40234454, 23247051 (*office*) E-mail: sultanchand74@yahoo.com; info@sultanchandandsons.com

Fax: 011-23266357; Website: www.sultanchandandsons.com

First Edition: 2022

© Authors

ISBN: 978-93-91820-46-6 (TC-1268)

Price: ₹ 395.00

EVERY GENUINE COPY OF THIS BOOK HAS A HOLOGRAM

SULW SULW

In our endeavour to protect you against counterfeit/fake books, we have pasted a copper hologram over the cover of this book. The hologram displays the full visual image, unique 3D multi-level, multi-colour effects of our logo from different angles when tilted or properly illuminated under a single light source, such as 3D depth effect, kinetic effect, pearl effect, gradient effect, trailing effect, emboss effect, glitter effect, randomly sparking tiny dots, micro text, laser numbering, etc. *A fake hologram does not display all these effects.*

Always ask the bookseller to put his stamp on the first page of this book.

All Rights Reserved: No part of this book, including its style and presentation, can be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording or otherwise without the prior written consent of the publishers. Exclusive publication, promotion and distribution rights reserved with the Publishers.

Warning: An unauthorised act done in relation to a copyright work may result in both civil claim for damages and criminal prosecution.

Special Note: Photocopy or Xeroxing of educational books without the written permission of publishers is illegal and against Copyright Act. Buying and Selling of pirated books is a criminal offence. Publication of a key to this book is strictly prohibited.

General: While every effort has been made to present authentic information and avoid errors, the author and the publishers are not responsible for the consequences of any action taken on the basis of this book.

Limits of Liability/Disclaimer of Warranty: The publisher and the author make no representation or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained therein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publishers nor the author shall be liable for damages arising herefrom.

Disclaimer: The publishers have taken all care to ensure highest standard of quality as regards typesetting, proofreading, accuracy of textual material, printing and binding. However, they accept no responsibility for any loss occasioned as a result of any misprint or mistake found in this publication.

Author's Acknowledgement: The writing of a Textbook always involves creation of a huge debt towards innumerable authors and publications. We owe our gratitude to all of them. We acknowledge our indebtedness in extensive footnotes throughout the book. If, for any reason, any acknowledgement has been left out we beg to be excused. We assure to carry out correction in the subsequent edition, as and when it is known.

Printed at: Himani Print Solution, Badarpur, New Delhi-110044.

PREFACE

It has been widely acknowledged the importance of Operations Research/Quantitative Techniques in decision-making. The need for a thorough understanding of various Operations Research Techniques by the students of management cannot be overemphasized. Present book is an attempt to provide a means for such understanding by concise explanation of the concepts and numerous solved examples and illustrations.

This book: "*Elements of Operations Research*" has been designed as an introductory text to the world of Operations Research. Primarily, it has been written for B.Com and BBA students of Madras University and Guru Nanak Dev University, Amritsar, yet the book will be suitable for the similar undergraduate and postgraduate courses in Operations Research/ Quantitative techniques of other universities.

The salient features of the book are:

- The book covers complete syllabus in Operations Research for BBA, B.Com and M.Com of almost all the Universities.
- There are detailed self-contained chapters on all the syllabus elements.
- The text uses simple language, lucid style, cogent presentation, and clarity of exposition.
- The text begins with chapter 1 highlighting the importance, modelling, methodology, applications and scope of Operations Research in business and industry.
- Chapter 2 concentrates on the formulation of practical problems (based on real life situations) in the format of linear programming problems. Chapter 3 and 4 deal with the development of solution methods of various linear programming problems.
- The special class of linear programming problems: Transportation and Assignment problems are discussed in Chapter 5 and 6 respectively.
- The concept of network in scheduling techniques using PERT/CPM methods are discussed in chapter 7.
- Decision-making rules under uncertainty, under risk and decision trees are discussed in chapter 8, while decision-making problems under conflict (Game Theory) are dealt with in chapter 9.
- Chapter 10 introduces the concept of queuing system, wherein elements of queuing process and Poisson Queuing Models are discussed.

- The concept of inventory in industry, its various types, and Economic Order Quantity (EOQ) are given in Chapter 11. EOQ models with and without price-breaks are discussed in detail.
- Chapter 12 is devoted to replacement decisions. This chapter also include problems related to recruitment and promotion.
- Chapter 13 on "Operations Scheduling" i.e., Sequencing has been dealt with at greater length owing to its increasing importance in the current business environment.

I express my gratitude to Dr. Priyanshu Gupta, Assistant Professor, Indian Institute of Management, Lucknow for his valuable suggestions during the writing of this book. It is earnestly hoped that the book will be found most useful and of greater utility to the students of B.Com, BBA and M.Com as well as to the business executives and consultants.

Suggestions for improvement shall be greatly received and duly acknowledged.

June, 2022

Dr. P K GUPTA

CONTENTS

1.	Decision-Making and Operations Research	1-10
	Definitions of Operations Research	2
	Characteristic features of OR	2
	Modeling in Operations Research	2
	Classification of Models	3
	Models by Degree of Abstraction	3
	Models by Function	3
	Models by Structure	3
	Models by Nature of the Environment	4
	Models by the Extent of Generality	4
	Methodology of Operations Research	4
	Problem Solving and Decision-Making	6
	Applications and Scope of Operations Research	7
	Community Operations Research	8
	Limitations of Operations Research	8
	Try Yourself	9
	Review Exercise	10
2.	Linear Programming	11 - 36
	Linear Programming Problem (LPP)	12
	Assumptions of Linear Programming Problem	12
	Three Stages of a LPP	12
	Formulation of a Linear Programming Problem	13
	General Linear Programming Problem	25
	Formulation of Linear Programming Model	25
	Standard Form of Linear Programming Problem	27
	Canonical Form of Linear Programming Problem	28
	Some Important Definitions	28
	Advantages of Linear Programming	33
	Limitations of Linear Programming	33
	Try Yourself	34
	Review Exercise	36

VIII || Contents

3.	Linear Programming Problem — Solution Methods	37 - 80
	Graphical Solution Method	37
	Working Procedure for Graphical Method	38
	Review Illustrations	44
	Simplex Method	55
	Terminology of Simplex Method	55
	Simplex Algorithm	56
	Use of Artificial Variables	60
	Review Illustrations	64
	Try Yourself	77
	Review Exercise	79
4.	Duality in Linear Programming	81 - 94
	General Primal-Dual Pair	82
	Duality and Simplex Method	87
	Economic Interpretation	90
	Try Yourself	93
	Review Exercise	94
5.	Transportation Problem	95 - 138
	Problem Statement	96
	Existence of Solution in Transportation Problem	97
	Basic Feasible Solution of a Transportation Problem	98
	Solution of a Transportation Problem	98
	Finding Initial Basic Feasible Solution	98
	North-West Corner Method	98
	Least Cost Method	100
	Vogel's Approximation Method	101
	Review Illustrations	103
	Optimality Test	110
	Stepping Stone Method	110
	Modified Distribution Method	111
	Review Illustrations	112
	Special Cases in Transportation Problems	129
	Prohibited Transportation Routes	130
	Maximization Transportation Problem	130
	Try Yourself	135
	Review Exercise	137

6.	Assignment Problem	139 – 178
	Assumptions in Solving Assignment Problems	140
	Mathematical Formulation of an Assignment Problem	140
	Solution Methods of Assignment Problem	141
	Simplex Method	141
	Transportation Method	142
	Complete Enumeration Method	142
	Hungarian Assignment Method	142
	Special Cases in Assignment Problems	157
	Maximization Case in Assignment Problems	157
	Prohibited Assignments	158
	Branch and Bound Method for Assignment	166
	Traveling Salesman Problem	171
	A Typical Assignment Problem	174
	Try Yourself	177
	Review Exercise	178
7.	Network Analysis – PERT/CPM	179 - 240
	Why Networks?	179
	Limitations in Using Network	180
	Basic Components of Network	180
	Activity	180
	Event	180
	Concurrent Activity	181
	Merge and Burst events	181
	Logical Sequencing	181
	Rules of Network Construction	183
	Numbering the Events	183
	Network Scheduling	191
	Critical Path Analysis	191
	Critical Path Calculations	193
	Float of an Activity and Event	194
	Procedure for Determining Critical Path (CPM)	195
	Programme Evaluation and Review Technique (PERT)	202
	Procedure for the Development of <i>PERT</i>	203
	Time-Cost Relationship in PERT	224
	Distinction between <i>PERT</i> and <i>CPM</i>	236

	Lincon Droomming Formulation and Natural	226
	Tray Yourself	230
	Paviaw Exercise	237
0		238
0.		241 - 264
	Elements of Decision-making Problem	241
	Pay-off Table and Opportunity Loss Table	242
	Decision-making Process	244
	Decision-making Under Certainty	244
	Decision-making Under Uncertainty	244
	Decision-making Under Risk	252
	Expected Monetary Value (EMV)	252
	Expected Opportunity Loss (EOL)	252
	Expected Value of Perfect Information (EVPI)	253
	Bayesian Decision Rule	262
	Decision Tree	268
	Try Yourself	281
	Review Exercise	282
9.	Game Theory	285 - 312
	Two-person Zero-sum Game	286
	Solving Two-person Zero-sum Games	287
	Equal Gain Method for 2×2 Games	289
	Calculus Method for 2×2 Games	291
	Graphical Method for Method for $m \times 2$ and $2 \times n$ Games	292
	Dominance Property	294
	Arithmetic Method for $n \times n$ Game	306
	Iterative Method of Approximate Solution of Games	308
	Try Yourself	311
	Review Exercise	311
10.	Queuing Models	313 - 358
	Queuing System	314
	Deterministic Queuing System	316
	Operating Characteristics of Queuing System	317
	Probability Distributions in Queuing System	317
	Transient-state and Steady-state of the System	318
	Classification of Queuing Models	318

	Probabilistic Queuing Models	319
	Poisson-Exponential Single Server and Infinite Population,	
	i.e., $(M / M / 1)$; (∞ / FCFS) Model	319
	Operating Characteristics	320
	Relationship among Operating Characteristics	321
	Poisson-Exponential Single Server and Finite Population, i.e. $(M/M/1)$: $(N/FCFS)$ Model	343
	Operating Characteristics	343
	Poisson-Exponential Single Server and Infinite Population, i.e., $(M / M / S)$; (∞ / FCFS) Model	348
	Operating Characteristics	348
	Try Yourself	355
	Review Exercise	356
11.	Inventory Control	359 - 400
	Types of Inventory	359
	Reasons for Carrying Inventories	360
	The Inventory Decisions	361
	Objectives of Scientific Inventory Control	361
	Costs Associated with Inventories	362
	Factors Affecting Inventory Control	362
	An Inventory Control Problem	363
	The Concept of EOQ	363
	Economic Order Quantity (EOQ) Model	364
	Characteristics of EOQ Model	365
	EOQ Model with Several Production Runs of Unequal Length	367
	EOQ and Quantity Discount	374
	EOQ and Price Breaks	378
	EOQ Model with Replenishment	385
	Characteristics of Model with Replenishment	386
	EOQ Model and Planned Shortages	390
	Try Yourself	398
	Review Exercise	399
12.	Replacement Decisions	401 - 430
	Situations which make the Replacement of Items Necessary	401
	Failure Mechanism of Items	402

13

Gradual Failure	402
Sudden Failure	402
Assumptions and Objectives of Replacement Decisions	402
Types of Replacement Problems	402
Replacement Policy for Equipment that Deteriorate Gradually	403
Replacement Policy for Equipment that Breaks-down / Fail Suddenly	412
Replacement Policy of Staffing/Man-power	421
Equipment Renewal Policy	423
Reliability and System Failure Rates	425
Failure Rates	425
Bath-tub-shaped Failure Rate	425
Instantaneous Failure Rate	426
Mean Time Between Failure (MTBF)	426
Estimation of Reliability	426
Reliability Improvement	427
Try Yourself	428
Review Exercise	429
Sequencing: Operations Scheduling	431 – 466
Some Basic Terms and Assumptions	432
Criteria and Objective Function for Scheduling	432
Methods of Scheduling	433
Use of Gantt Chart	433
Single Processor Scheduling	434
Shortest Processing Time (SPT) Procedure	434
Due Date (DD) Procedure	438
Moore Procedure	439
Flow Shop Scheduling	441
Two-Machine Flow Shop	442
Three-machine Flow Shop	452
Processing of Two Jobs through ' M' Machines	457
Try Vourself	461
Paviaw Evercica	404
KEVIEW EXELUISE	463

Syllabus

UNIVERSITY OF MADRAS BBA Degree (General) Degree Course Syllabus *w.e.f.* 2020-2021

BBA-DSA04

Allied-IV: Operations Research

Year: II

Semester: IV

UNIT I : Introduction to Operations Research

Meaning and Scope - Characteristics - Models in Operations Research, LPP - Formulation – Graphical Method - Simplex Method - Big M Method - Applications in Business - Merits and Demerits.

UNIT II : Transportation Model

Basic Feasible Solution - Formulation, Solving a TP, Assignment Models - Formulation - Solution.

UNIT III : Network Analysis

Work break down analysis - Construction - Numbering of events - Time calculation - Critical path, slack, float - application.

UNIT IV : Queuing Models

Elements of queuing system - Characteristics of queuing model.

UNIT V : Decision Theory

Statement of Baye's Theorem Application, Probability - Decision Trees.

B.Com. (General) Degree Course Syllabus *w.e.f.* 2020-2021

BGE-CSA4A

Semester: IV

Allied-IV(A): Elements of Operations Research Common To B.Com(A&F), B.Com(MM), B.Com(CA) & B.Com(ISM)

Year: II

Objectives:

- * To facilitate this understanding of the Concept of Operations Research
- * To help the Students to understand the Various Techniques of Solving Problems

Out Come:

Understanding of the Concept of Operations Research and to help the Students to Understand the Various Techniques of Solving Problems

UNIT I : Introduction

Operations Research - Meaning-Definition - Origin and History- Characteristic Features - Need-Scope - Steps - Techniques - Application- Limitations

UNIT II : Linear Programming Problem LPP

Meaning - Requirements - Assumptions - Applications - Formulating LPP - Advantages - Limitations Formulating LP Model (Simple Problems Only)

UNIT III : Methods of LPP

Obtaining Optimal Solution for Linear Programming Problem (LPP) - Graphical Method - Problems -Simplex Method for Type of LPP and for Slack Variable Case - Maximization Function - Minimization Function (Simple Problem Only)

UNIT IV : Transportation Problems

Meaning - (Initial Basic Feasible Solution) Assumptions - Degenerate Solution - North - West Corner Method - Least Cost Method - Vogels Approximation Method - Assignment Problems - Features - Transportation Problem Vs Assignment Problem - Hungarian Method (Simple Problems Only)

UNIT V : Game Theory

Year: II

Meaning- Types of Games- Basic Assumptions- Finding Value of Game for Pure Strategy -Mixed Strategy -Indeterminate Matrix and Average Method -Graphical Method -Pure Strategy- Saddle Point Payoff Matrix Value of Game (Simple Problems Only)

GURU-NANAK DEV UNIVERSITY, AMRITSAR Bachelor of Business Administration Syllabus *w.e.f.* 2020-2021

BBA-406

Operations Research

Semester: IV

Section A

Operations Research: Meaning, Significance and Scope, Introduction to Linear Programming, Formation of Linear Programming Problem, Graphical Method, Simple Method, Two Phase, Simplex Method, Duality in Linear Programming.

Section **B**

Definition of Dual Problem, General Rules of Converting Primal into its Dual, Transportation Problem, Assignment Problem.

Section C

Game Theory: Two persons zero - sum Games, Pure Stategies, Mixed Strategies, Dominance. **Inventory:** Types, Nature and classification, Economic lot size models, Quantity Discounts.

Section D

CPM/PERT: Basic concepts of Network, Preparation of the Network diagram, Project Duration and Critical Path, Probability of Project Completion.

GURU-NANAK DEV UNIVERSITY, AMRITSAR B.Com (Pass & Hons.) Syllabus *w.e.f.* 2020-2021

Year: II

Basics of Operations Research: Development, Definition, Characteristics, Necessity, Scope, Limitations.

Operations Research

Section A

Linear Programming: Introduction, Applications, Formulation of Linear Programming Problem, General Linear Programming Problem, Graphical Method of Solution, Theory of Simplex Method, Big-M Method...

Section **B**

Transportation Model: Assumption, Formulation and Solution of Transportation Models, Trans-Shipment Problems, Definition of Assignment Model, Hungarian Method for Solution of Assignment Problems, Travelling Salesman Problem.

Section C

Queuing Models: Application, Introduction, Elements, Operating Characteristics, Waiting Time and Idle time costs, Model I - Single Channel Poisson Arrival with Exponential Service Times (Infinite Population); Assumption & Limitation Poisson of .Queuing-Model.

Game Theory: Theory of Games, Characteristics of Games, Rules - Look for a pure strategy, Reduce Game by Dominance, Mixed Strategies, $(2 \times 2 \text{ games}, 2 \times n \text{ games and } m \times 2 \text{ games})$

Section D

Network Analysis in Project Planning: Project, Project Planning Scheduling, CPM, PERT, Cost Analysis and Crashing the Network Activities.

UNIVERSITY OF KERALA BBA

Syllabus w.e.f. 2020-2021

CO 244S

Management Optimization Techniques

Semester: IV

Year: II *Objectives*:

1. To convey basic principles and application of optimization tools of resource utilization.

2. To provide an insight into optimal project implementation Techniques under deterministic and probabilistic conditions.

Model 1: Optimization Techniques: Introduction - Definition-Nature and Importance. Steps in Intelligent decision making. Modelling Techniques.

Model 2: Linear Programming: Introduction - Formulation of LPP - Maximize, Minimize, objective function constraints and non negativity conditions. Graphical solution - Optimal solution - Infeasible and unbounded solution degeneracy - Simplex method - slack surplus and artificial variable - Duality Primal and dual problem..

Model 3:Transportation and Assignment Problems: Transportation Problem - Initial basic solution using North West Corner rule - Lower Cost Entry Method and Vogel Approximation Method - Optimal solution MODI method. Degeneracy - Unbalanced and Maximization in Transportation Problems. Assignment Problems Hungarian Method Maximization. Unbalanced and Restricted Assignment Problems Travelling Salesman Problems.

Semester: IV

BCG-603

CONTENTS IN BRIEF

				Try Yourself		
	Chapters	Examples	Exercise Answers	T & F	MCQs	Review Exercises
1.	Decision Making and Operations Research			10	8	15
2.	Linear Programming	16	18	10	10	18
3.	Linear Programming Problem — Solution Methods	23	34	18	12	15
4.	Duality in Linear Programming	8	10	10	5	8
5.	Transportation Problem	17	32	15	14	14
6.	Assignment Problem	20	30	7	10	10
7.	Network Analysis – PERT/CPM	16	49	15		25
8.	Decision Theory	14	35	10		16
9.	Game Theory	9	34	8		13
10.	Queuing Models	33	37	12		20
11.	Inventory Control	22	46	10		18
12.	Replacement	15	35	10		12
13.	Sequencing: Operations Scheduling	17	29	7	10	12
	Total	210	389	142	69	196

About the Book

It has been widely acknowledged the importance of Operations Research/Quantitative Techniques in Managerial decision-making. The need for a thorough understanding of various Operations Research Techniques by the students of management cannot be overemphasized. Present book is an attempt to provide a means for such understanding by concise explanation of the concepts and numerous solved examples and illustrations.

This book "Elements of Operations Research" has been designed as an introductory text to the world of Operations Research. Primarily, it has been written for B.Com. and BBA students of Madras University and Guru Nanak Dev University, yet the book will be suitable for similar undergraduate and postgraduate courses in Operations Research /Quantitative techniques of other universities.

Salient Features

- The book covers complete syllabus in Operations Research for BBA, B.Com. & M.Com. of all Universities.
- There are detailed self-contained chapters on all the syllabus elements.
- The text uses simple language, lucid style, cogent presentation, and clarity of exposition.
- The text begins with chapter 1 highlighting the importance, modelling, methodology, applications and scope of Operations Research in business and industry.
- Chapter 2 concentrates on the formulation of practical problems (based on real life situations) in the format of linear programming problems. Chapter 3 and 4 deal with the development of solution methods of various linear programming problems.
- The special class of linear programming problems: Transportation and Assignment problems are discussed in Chapter 5 and 6 respectively.
- The concept of network in scheduling techniques using PERT/CPM methods are discussed in chapter 7.
- Decision-making rules under uncertainty, under risk and decision trees are discussed in chapter 8, while decision-making under conflict (Game Theory) is dealt with in chapter 9.
- Chapter 10 introduces the concept of queuing system, wherein elements of queuing process and Poisson queunig models are discussed.
- The concept of inventory in industry, its various types, and economic order quantity (EOQ) are given in Chapter 11. EOQ models with and without price breaks are discussed in detail.
- Chapter 12 is devoted to replacement decisions. This chapter includes problems on recruitment and promotion.
- Chapter 13 on Operations Scheduling, *i.e.*, sequencing has been dealt with at greater length owing to its increasing importance in the current business environment.

About the Author

Dr. PK Gupta has over three decades of experience in teaching Mathematics and Operations Research to undergraduate and postgraduate students. He obtained a Master's degree in Mathematics, and then another one in Operations Research from the University of Delhi. He obtained his doctorate in 1977 in the field of Queuing Theory.

He served as a faculty member in various capacities at the Department of Mathematics, JV Jain College, Saharanpur; where he taught a range of topics on Mathematics and Operations Research. These included Boolean Algebra, Linear Algebra, Difference Equations, Graph Theory and Techniques of Operations Research.

In 1979, he was invited by the Cochin University of Science & Technology, Kochi (Kerala) to teach the students of their newly started diploma course in Operations Research and Computer Applications. He also has been actively engaged in research in the discipline. He supervised multiple Ph.D. scholars in Optimization of Queues and also applied Optimization Techniques in paper industry. He has authored more than half a dozen books of Mathematics and Operations Research, in addition to multiple research publications.

Sultan Chand & Sons

Publishers of Standard Educational Textbooks 23 Daryaganj, New Delhi-110002 Phones (S): 011-23281876, 23266105, 41625022 (O): 011-23247051, 40234454 Email : sultanchand74@yahoo.com info@sultanchandandsons.com

