As Per Latest UGCF - 2022 Pattern

Prof. (Dr.) Chaitanya Kumar Dr. Bhavneet Kaur Dr. Geetan Manchanda

A Textbook on Differential Equations and Applications

Sultan Chand & Sons

LATEST UGCF – 2022 PATTERN Based on National Education Policy 2020

A TEXTBOOK ON DIFFERENTIAL EQUATIONS AND APPLICATIONS

PROF. (DR.) CHAITANYA KUMAR

Professor Delhi College of Arts and Commerce University of Delhi, Delhi

DR. BHAVNEET KAUR

Associate Professor Lady Shri Ram College for Women University of Delhi, Delhi

DR. GEETAN MANCHANDA

Associate Professor Maitreyi College University of Delhi, Delhi

SULTAN CHAND & SONS[®] Educational Publishers New Delhi

SULTAN CHAND & SONS[®]

23, Daryaganj, New Delhi-110002

Phone: 011-23281876, 23266105, 23277843 (Showroom & Shop) 011-40234454, 23247051 (office)

E-mail: sultanchand74@yahoo.com; info@sultanchandandsons.com

Fax: 011-23266357; Website: www.sultanchandandsons.com

First Edition: 2023

ISBN: 978-93-91820-32-9 (TC-1289)

Price: ₹ 550.00

EVERY GENUINE COPY OF THIS BOOK HAS A HOLOGRAM

In our endeavour to protect you against counterfeit/fake books, we have pasted a copper hologram over the cover of this book. The hologram displays the full visual image, unique 3D multi-level, multi-colour effects of our logo from different angles when tilted or properly illuminated under a single light source, such as 3D depth effect, kinetic effect, pearl effect, gradient effect, trailing effect, emboss effect, glitter effect, randomly sparking tiny dots, micro text, laser numbering, etc.

A fake hologram does not display all these effects. Always ask the bookseller to put his stamp on the first page of this book.

All Rights Reserved: No part of this book, including its style and presentation, can be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording or otherwise without the prior written consent of the publishers. Exclusive publication, promotion and distribution rights reserved with the Publishers.

Warning: An unauthorised act done in relation to a copyright work may result in both civil claim for damages and criminal prosecution.

Special Note: Photocopy or Xeroxing of educational books without the written permission of publishers is illegal and against Copyright Act. Buying and Selling of pirated books is a criminal offence. Publication of a key to this book is strictly prohibited.

General: While every effort has been made to present authentic information and avoid errors, the author and the publishers are not responsible for the consequences of any action taken on the basis of this book.

Limits of Liability/Disclaimer of Warranty: The publisher and the author make no representation or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained therein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publishers nor the author shall be liable for damages arising herefrom.

Disclaimer: The publishers have taken all care to ensure highest standard of quality as regards typesetting, proofreading, accuracy of textual material, printing and binding. However, they accept no responsibility for any loss occasioned as a result of any misprint or mistake found in this publication.

Author's Acknowledgement : The writing of a Textbook always involves creation of a huge debt towards innumerable authors and publications. We owe our gratitude to all of them. We acknowledge our indebtedness in extensive footnotes throughout the book. If, for any reason, any acknowledgement has been left out we beg to be excused. We assure to carry out correction in the subsequent edition, as and when it is known.

to Our families for their encouragement and constant support

____ |____

____|

P

Preface

The authors take immense pleasure in presenting to the readers the book entitled **"A Textbook on Differential Equations and Applications"**, created and compiled with an objective to provide the readers with a worthwhile experience of learning the basic concepts of differential equations and their applications.

This book has been designed in accordance with the Undergraduate Curriculum Framework-2022, followed by the Central Universities of India, including University of Delhi under the National Education Policy (NEP)-2020. It is exclusively crafted to cater to the interest of students of B.Sc. (Hons.) Mathematics (DSC-6) Semester-III, GE-3(i) Hons. courses, Semester-III (Other than Mathematics), B.A. (Prog.) Semester-III, Discipline A-3 and GE-3(i) Bachelor in Multidisciplinary Courses Semseter-III. It is also useful for B.Tech students of various Universities and for the preparation of competitive examinations. The students of open and distance education courses will also find the book very beneficial.

A sincere and humble attempt has been made to provide the readers a complete and self-sufficient book written in a lucid and simplified manner, giving comprehensive step-by-step explanations for better understanding of the subject.

There are thirteen chapters in this book. In each chapter the concepts are vividly explained, supported by nearly 352 examples and 227 exercises to provide the students an integrated view of the theory and its applications. A separate chapter comprising practicals of differential equations using the softwares Mathematica, Maxima and Octave is also provided to emphasize the importance of qualitative analysis of the systems defined by the differential equations. Finally, recent University of Delhi Question Papers with their solutions have been included for ample practice.

Most of the questions conform to the examination pattern followed in the University Examinations and Professional Examinations.

We gratefully acknowledge the inspiration, encouragement and valuable suggestions received from the teachers who are teaching undergraduate and postgraduate courses in several Universities.

In particular, we convey our thanks to Prof. Rajiv Chopra (Principal, DCAC, University of Delhi), Prof. Suman Sharma (Principal, Lady Shri Ram College for Women, University of Delhi), Prof. Haritma Chopra (Officiating Principal, Maitreyi College, University of Delhi), Prof. Ajay Kumar (NASI, Senior Scientist), Prof. R.K. Mohanty (Officiating President, South Asian University), Prof. Ayub Khan (ex-Head of Department of Mathematics, Jamia Millia Islamia), Prof. Ruchi Das (Head of Department of Mathematics, University of Delhi), Prof. J.K. Singh (Head of Department of Mathematics, Netaji Subhash University of Technology, New Delhi), Prof. C.K.Jaggi (Head of Department of Operations Research, University of Delhi), Prof. Arshad Khan (Jamia Millia Islamia), Prof. S.K. Verma (Head of Department at SOL, University of Delhi), Prof. Kul Anand Sharma, Prof. B.K. Tyagi, Dr. Satyendra Kumar, Dr. Arun Bala Vaish.

Gratitude is also due to our families for their unwavering support throughout this journey. Our heartfelt acknowledgement is due to the entire staff of the publisher, Sultan Chand & Sons and their signs for the efficiency, assistance and wholehearted cooperation. Genuine efforts have been made to proofread the book to avoid any errors. However, any mistakes left out inadvertently brought to our notice will be thankfully acknowledged.

New Delhi

Prof. (Dr.) Chaitanya Kumar Dr. Bhavneet Kaur Dr. Geetan Manchanda

S

Syllabus

UNIVERSITY OF DELH Undergraduate Curriculum Framework (UGCF) – 2022 Based on National Education Policy-2020

B.Sc. (Hons.) Mathematics (Sem II) Discipline Specific Core (DSC-6): Ordinary Differential Equations

Unit 1: First-Order Differential Equations

Concept of implicit, general and singular solutions for the first order ordinary differential equation; Bernoulli's equation, Exact equations, Integrating factors, Initial value problems, Reducible second order differential equations; Applications of first order differential equations to Newton's law of cooling, exponential growth and decay problems.

Unit 2: Second and Higher-Order Differential Equations

General solution of homogenous equation of second order, Principle of superposition for a homogenous equation, Wronskian and its properties, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Method of variation of parameters, Method of undetermined coefficients, Two-point boundary value problems, Cauchy-Euler's equation, System of linear differential equations, Application of second order differential equation: Simple pendulum problem.

Unit 3: Formulation and Analysis of Mathematical Models

Introduction to compartmental models, Lake pollution model; Density-dependent growth model, Interacting population models, Epidemic model of influenza and its analysis, Predator-prey model and its analysis, Equilibrium points, Interpretation of phase plane.

List of Practicals

Modeling of the following problems using Sage Math / Mathematica /MATLAB / Maple / Maxima / Scilab/ Octave, etc.

- 1. Solutions of first, second and third order differential equations.
- 2. Plotting of family of solutions of differential equations of first, second and third order.
- 3. Solution of differential equations using method of variation of parameters.
- 4. Growth and decay model (exponential case only).
- 5. Lake pollution model (with constant/seasonal flow and pollutant concentration).
- 6. Density-dependent growth model.
- 7. Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one predator).
- 8. Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).

Hons. Courses (Other than Mathematics) (Sem III) General Elective (GE)-3(i): Differential Equations

&

B.Sc. (Physical Sciences/ Mathematical Sciences) with Mathematics as one of the Core Discipline (Sem III)

and

B.A. (Prog.) Discipline Specific Core (DSC) A-3: Differential Equations (Sem III)

Unit 1: Ordinary Differential Equations

First order ordinary differential equations: Basic concepts and ideas, First order exact differential equations, Integrating factors and rules to find integrating factors, Linear equations and Bernoulli equations, Initial value problems, Applications of first order differential equations: Orthogonal trajectories and Rate problems; Basic theory of higher order linear differential equations, Wronskian and its properties.

Unit 2: Explicit Methods of Solving Higher-Order Linear Differential Equations

Linear homogeneous equations with constant coefficients, Linear non-homogeneous equations, Method of undetermined coefficients, Method of variation of parameters, Two-point boundary value problems, Cauchy-Euler Equations, System of linear differential equations.

Unit 3: First and Second Order Partial Differential Equations

Classification and Construction of first order partial differential equations, Method of characteristics and general solutions of first order partial differential equations, Canonical forms and method of separation of variables for first order partial differential equations; Classification and reduction to canonical forms of second order partial differential equations and their general solutions.

viii

C

Contents

1.	PRELI	MINARIES	1–8
	1.1.	Integral of a Function	1
	1.2.	Some Standard Formulae of Integration	1
	1.3.	Methods of Integration	2
	1.4.	Logarithmic and Exponential Formulae	4
	1.5.	Partial Derivatives	4
	1.6.	Differential	4
	1.7.	Some Formulae on Differentials	5
	1.8.	Ordinary Differential Equation and its Order and Degree	5
	1.9.	General Solution	5
	1.10.	Types of Differential Equations	6
	1.11.	Formation of a Differential Equation	7
2.	ORDIN	NARY DIFFERENTIAL EQUATIONS OF ORDER ONE AND FIRST DEGREE	9–62
	2.1.	Differential Equations	9
	2.2.	Order and Degree of a Differential Equation	9
	2.3.	Formation of a Differential Equation	9
	2.4.	Differential Equations of First Order and First Degree	11
	2.5.	Variable Separable Form	11
	2.6.	Homogeneous Differential Equations	17
	2.7.	Differential Equations Reducible to Homogeneous Form	19
	2.8.	Linear Differential Equations	21
	2.9.	Differential Equations Reducible to Linear Form (Bernoulli's Equation)	24
		Exercise 2.1	27
		Answers	28
	2.10.	Exact Differential Equations	28
	2.11.	Reducible to Exact Differential Equation	31

x			Contents
	2.12.	Miscellaneous Examples	37
	2.13.	Initial Value Problems and Boundary Value Problems	43
	2.14.	Reducible Second-Order Differential Equations	45
		Exercise 2.2	48
		Answers	48
	2.15.	Applications of Differential Equations of First Order	49
		2.15.1. Orthogonal Trajectories	49
		2.15.2. Newton's Law of Cooling	51
		2.15.3. Growth and Decay Problems	53
		Exercise 2.3	59
		Answers	61
3.	DIFFE	RENTIAL EQUATIONS OF FIRST ORDER BUT NOT TO FIRST DEGREE	63–90
	3.1.	Introduction	63
	3.2.	Differential Equations Solvable for y	63
	3.3.	Differential Equations Solvable for x	68
		Exercise 3.1	73
		Answers	73
	3.4.	Differential Equations Solvable for p	73
		Exercise 3.2	77
	25	Answers China da Escation	78
	3.5.	Clairaut's Equation	/8
		Exercise 5.5	82 82
	3.6	Answers Existence and Uniqueness of Solutions	02 82
	3.0.	Implicit and Singular Solutions	02 84
	5.7.	Freecise 3.4	89
		Answers	89
4.	THE W	RONSKIAN AND ITS PROPERTIES	91–100
	4 1	The Wronskian	Q1
	4.1.	Properties of Wronskian	91
	1.2.	Exercise 4 1	99
		Answers	99
5.	LINEA	R DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS	101–132
	5 1	Introduction	101
	ン.1. ちつ	The Complementary Function (CE)	101
	5.2. 5.3	The Particular Integral (PI)	102
	5.5. 5.4	Methods for Finding the Particular Integral	100
	5. - .	Miscellaneous Examples	119
	2.2.		

___|

Con	itents			xi
	5.6.	Exercise 5.1 Answers Boundary-Value Problems 5.6.1 Basic Second-Order Boundary-Value Problems Exercise 5.2 Answers		127 128 129 129 131 131
6.	номо	OGENEOUS LINEAR DIFFERENTIAL EQUATIONS	13	3–148
	6.1. 6.2. 6.3. 6.4.	Cauchy's Homogeneous Linear Differential Equations Legendre's Homogeneous Linear Differential Equations Miscellaneous Examples <i>Exercise</i> 6.1 <i>Answers</i> Applications of Second Order Differential Equations 6.4.1. The Simple Pendulum <i>Exercise</i> 6.2 <i>Answers</i>		133 137 139 143 143 144 144 144 147 147
7.	METH	OD OF VARIATION OF PARAMETERS AND UNDETERMINED COEFFICIENTS	14	9–174
	7.1. 7.2. 7.3.	Method of Variation of Parameters Miscellaneous Examples <i>Exercise</i> 7.1 <i>Answers</i> Method of Undetermined Coefficients <i>Exercise</i> 7.2 <i>Answers</i>		149 155 163 164 164 173 174
8.	SIMU	LTANEOUS LINEAR DIFFERENTIAL EQUATIONS	17	5–194
	8.1. 8.2. 8.3.	Type I: A Pair of Linear Differential EquationsMiscellaneous ExamplesType II: Symmetrical Simultaneous Differential Equations8.3.1. Method of Grouping8.3.2. Method of MultipliersExercise 8.1Answers		175 182 184 184 186 192 193
9.	TOTA	L DIFFERENTIAL EQUATIONS	19	5–212
	9.1. 9.2. 9.3.	Total Differential Equations Condition of Integrability Solution of Total Differential Equations (By Inspection) <i>Exercise</i> 9.1 <i>Answers</i>		195 195 196 202 202

___|

____|

xii			Contents
	9.4.	Solution of Total Differential Equations (General Method)	202
		Exercise 9.2	207
		Answers	207
	9.5.	Solution of Homogeneous Total Differential Equations	207
		Exercise 9.3	212
		Answers	212
10.	COMP	ARTMENTAL MODELS	213–250
	10.1.	Introduction	213
	10.2.	Exponential Decay and Radioactivity	214
		10.2.1. Radioactive Dating	216
		10.2.2. Detecting Art Forgeries	218
	10.3.	Lake Pollution Models	219
		10.3.1. A Lake Pollution Model	223
	10.4	10.3.2. Lake Burley Griffin (A Case Study)	227
	10.4.	Drug Assimilation Model	232
		10.4.1. Model II Course of Pills	235
	10.5	Dull Dizzy or Dead (Blood Alcohol Level) (A Case Study)	233
	10.5.	Exercise 10.1	248
		Answers	249
11.	MODE	LS OF SINGLE POPULATION	251–274
	11.1.	Introduction	251
	11.2.	Exponential Growth Model	251
		11.2.1. Logistic Model or Density Dependent Growth Model	252
		11.2.2. Limited Growth with Harvesting	258
		Exercise 11.1	271
		Answers	272
12.	INTER	ACTING POPULATION AND PHASE-PLANE ANALYSIS	275–324
	12.1.	Introduction	275
	12.2.	Phase-Plane Analysis	275
	12.3.	Epidemic Models	277
	12.3.	Epidemic Models 12.3.1. An Epidemic Model for Influenza	277 277
	12.3.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases	277 277 283
	12.3. 12.4.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases Predator and Prey Model Model of a Dattle	277 277 283 292
	12.3. 12.4. 12.5.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases Predator and Prey Model Model of a Battle 12.5.1. Aimed Firing	277 277 283 292 303
	12.3. 12.4. 12.5.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases Predator and Prey Model Model of a Battle 12.5.1. Aimed Firing 12.5.2. Guerrilla Warfare	277 277 283 292 303 304 206
	12.3. 12.4. 12.5.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases Predator and Prey Model Model of a Battle 12.5.1. Aimed Firing 12.5.2. Guerrilla Warfare 12.5.3. Trench Warfare/Long-Range Artillery	277 277 283 292 303 304 306 307
	12.3. 12.4. 12.5.	Epidemic Models 12.3.1. An Epidemic Model for Influenza 12.3.2. Endemic Diseases Predator and Prey Model Model of a Battle 12.5.1. Aimed Firing 12.5.2. Guerrilla Warfare 12.5.3. Trench Warfare/Long-Range Artillery Competing Species	277 277 283 292 303 304 306 307 314

___|

____|

Contents			xii
	10 5 1		214
	12.5.1.	Without Density Dependent Growth	314
	12.3.2. Exercise	a 12.1	222
	Answers	s 12.1	323
PRAC	TICALS	IN DIFFERENTIAL EOUATIONS	325-382
12.1	Dreation	le in Differential Equations Using Mathematics Software	225
13.1	12 1 1	First Second and Third Order Ordinary Differential Equations	323
	12.1.2	Laka Dallution Model	223
	15.1.2	(a) Constant Flow	227
		(<i>a</i>) Constant Flow (<i>b</i>) Seesonal Flow	327
	1212	(b) Seasonal Flow	229
	13.1.3	Drug Assimilation Model	220
		(a) Single Cold Pill (b) Course of Cold Pills	221
	1214	(b) Course of Cold Phils	222
	13.1.4	Growth and Decay Model	333
	13.1.5	Logistic Model	334
		(a) Without Harvesting	334
	10.1.6	(b) With Harvesting	335
	13.1.6	Predator-Prey Model	336
		(a) Basic Lotka Volterra Model	336
		(b) With DDT Spray	337
		(c) With Density Dependence	338
		(d) Two Prey One Predator	339
	13.1.7	Battle Model	341
		(a) Basic Battle Model	341
		(b) Jungle Warfare	342
		(c) Long Range Weapons	343
13.2	Practica	ls in Differential Equations Using Maxima Software	344
	13.2.1	First, Second and Third Order Ordinary Differential Equations	344
	13.2.2	Lake Pollution Model	348
		(a) Constant Flow	348
		(b) Seasonal Flow	350
	13.2.3	Drug Assimilation Model	352
		(a) Single Cold Pill	352
		(b) Course of Cold Pills	354
	13.2.4	Growth and Decay Model	357
	13.2.5	Logistic Model	358
	13.2.6	Predator-Prey Model	359
		(a) Basic Lotka Volterra Model	359

| |____

___|

xiv	Contents
(b) With DDT Spray	360
(c) With Density Dependence	361
13.2.7 Epidemic Model of Influenza	363
13.3 Practicals in Differential Equations Using Octave Software	364
13.3.1 First, Second and Third Order Ordinary Differential Equations	364
13.3.2 Lake Pollution Model	366
(a) Constant Flow	366
(b) Seasonal Flow	367
13.3.3 Drug Assimilation Model	368
(a) Single Cold Pill	368
(b) Course of Cold Pills	369
13.3.4 Growth and Decay Model	370
(a) Exponential Case	370
(b) Inverse Exponential Case	371
13.3.5 Logistic Model	372
(a) With Harvesting	372
(b) Without Harvesting	373
13.3.6 Predator-Prey Model	374
(a) Basic Lotka Volterra Model	374
(b) With Density Dependence	376
(c) With DDT Spray	377
(d) Two Prey One Predator	378
13.3.7 Epidemic Model of Influenza	379
(a) Basic Model	379
(b) Contagious for Life	380
(c) Disease with Carriers	380
UQP UNIVERSITY QUESTION PAPERS	383-520
■ B.A. (Prog.), Semester-V [CBCS], 2018, Set I	383
■ B.A. (Prog.), Semester-V [CBCS], 2018, Set II	396
■ B.A. (Prog.), Semester-V [CBCS], 2019, Set I	410
■ B.A. (Prog.), Semester-V [CBCS], 2019, Set II	424
Generic Elective for Hons. (other than Mathematics)	10 (
Semester-III [CBCS], 2018	436
Generic Elective for Hons. (other than Mathematics)	450
$\blacksquare B A (Prog) Semester-VI (LOCE) 2021$	439 475
B.Sc. (Hons.). Mathematics. Semester – II. (LOCF). 2021	482
B.Sc. (Hons.), Mathematics, Semester–II, (LOCF), 2022	504

___| |

____|

BC

Brief Contents

Chapter Title	Folio	Pages	Examples	Exercise	Cases	Definition	Figures
1. Preliminaries	1-8	8	8			2	
2. Differential Equations of Order One and First Degree	9-62	34	56	72	2	1	5
3. Differential Equations of First Order but Not to First Degree	63-90	28	46	25	_		7
4. The Wronskian and its Properties	91-100	10	11	10		_	
5. Linear Differential Equations with Constant Coefficients	101-132	32	34	19	10	1	_
6. Homogeneous Linear Differential Equations	133-148	16	15	14			2
7. Method of Variation of Parameters and Undetermined Coefficients	149-174	26	24	28		1	
8. Simultaneous Linear Differential Equations	175-194	20	19	18	_		
9. Total Differential Equations	195-212	18	34	12		1	
10. Compartmental Models	213-250	38	14	7	7	1	18
11. Models of Single Population	251-274	24	12	12	_	_	8
12. Interacting Population and Phase-Plane Analysis	275-324	50	29	2	7	3	45
13. Practicals in Differential Equations	325-382	58	8	8	—	—	55
Mathematica Software (20 Questions)							
Maxima Software (13 Questions)							
Octave Software (17 Questions)							
University Question Papers (2018–2022)	383-520	138		_	_	_	
Total		520	352	227	26	10	140

Symbols

			Greek Al	phabets			
Alpha	А	,	α	Nu	Ν	,	ν
Beta	В	,	β	Xi	Ξ	,	ξ
Gamma	Г	,	γ	Omicron	0	,	0
Delta	Δ	,	δ	Pi	П	,	π
Epsilon	Е	,	3	Rho	Р	,	ρ
Zeta	Ζ	,	ζ	Sigma	Σ	,	σ
Eta	Н	,	η	Tau	Т	,	τ
Theta	Θ	,	θ	Upsilon	Υ	,	υ
Iota	Ι	,	í	Phi	Φ	,	φ
Kappa	Κ	,	к	Chi	Х	,	ξ
Lambda	Λ	,	λ	Psi	Ψ	,	ψ
Mu	М	,	μ	Omega	Ω	,	ω

Symbols

\Rightarrow	implies
\Leftrightarrow	is equivalent to
{ }	set
E	is an element of
:	such that
\subset	is contained in (is a subset of)
\supset	contains (is a superset of)
$X \sim A$	complement of A with respect to X
U	union
\cap	intersection
Φ	the empty set
Ξ	there exists
\forall	for all
\mathbb{N}	the set of all natural numbers
Z	the set of all integers
\mathbb{Z}^+	the set of all positive integers
Q	the set of all rational numbers
Q^+	the set of all positive rational numbers
\mathbb{R}	the set of all real numbers
\mathbb{R}^+	the set of all positive real numbers
∂	del
D	$\frac{d}{dr}$
ln	log
IF	Integrating Factor
PI	Particular Integral
wrt	with respect to
vv.1.l	with respect to

xvi

About the Book

This book has been designed in accordance with the Undergraduate Curriculum Framework-2022 followed by the Central Universities of India including University of Delhi under the National Education Policy (NEP)-2020. Keeping in mind the need to uphold students' interest in the subject, vivid explanation of concepts as well as explanatory illustrations followed by exercises have been included. The book is exclusively designed to help and guide the students of Mathematics DSC-6 B.Sc. (Hons.) Mathematics Semester-II; GE-3(I) all Honours Courses (Other than Mathematics); Discipline A-3 (3-Core & 2-Core). It is also useful for B.Tech. students of various Universities and for preparation of competitive examinations. The students of open and distance education courses will also find the book very beneficial.

Salient Features

- An all-encompassing and self-sufficient textbook for UGCF-2022 based on NEP-2020.
- Written in a lucid and simple language.
- Written with a view to present a qualitative understanding of the subject.
- Comprehensive step-by-step explanation for easier understanding of the subject.
- Many solved examples and unsolved problems have been drawn from recent examination papers of Universities.
- Practicals using Softwares (Mathematica, Maxima & Octave) are included for better understanding of the subject.
- O Recent Delhi University Question Papers with Solutions have been included for ample practice.

About the Authors

Prof. (Dr.) Chaitanya Kumar has been teaching Mathematics in Delhi College of Arts and Commerce, University of Delhi for the last 40 years. He received his Doctorate degree in Mathematics from University of Delhi. He has published several research papers in the area of Boundary Value Problems by Integral Equation Techniques in reputed International Journals. He has been a Research Supervisor at Post Graduate and higher levels. He has authored important books on Mathematics; Essentials of Mathematics for Business Studies, Mathematics for M.C.A. Entrance Examination, Basic Research Methods and Statistics for Social Sciences,

Theory of Analytic Geometry and Applied Algebra, Elements of Analysis, Ordinary and Partial Differential Equations, Probability and Statistics, Fundamentals of Calculus and Analytical Geometry for graduate and higher levels.

Dr. Bhavneet Kaur is an Associate Professor, Department of Mathematics, Lady Shri Ram College for Women. She has an experience of 19 years of teaching undergraduate students of University of Delhi. She received her Doctorate degree in Mathematics from University of Delhi in 2016 and is actively involved in research in the field of Celestial Mechanics and Space Dynamics. Her work is published in National and International Journals of repute. She is also a research guide and is fully committed to the welfare of the student fraternity. She has authored an important book on Mathematics, Fundamentals of Calculus.

Geetan Manchanda topped the University of Delhi in her M.Sc. Mathematics with six Gold Medals. She earned her Ph.D. in Applied Mathematics from Jamia Millia Islamia University. Presently, she is serving as an Associate Professor of Mathematics at Maitreyi College, University of Delhi and is actively involved in teaching and research since 16 years. She has published several papers in international journals of repute. She is entirely dedicated to the student community and is continuously devising ways for igniting their minds, bringing out their creativity and instilling love for Mathematics.

Sultan Chand & Sons

23 Daryaganj, New Delhi-110002 Phones (S) : 011-23281876, 23266105, 41625022 (O): 011-23247051, 40234454 Email : sultanchand74@yahoo.com info@sultanchandandsons.com

